A Neuromuscular - Model Based Control Strategy For Powered Ankle - Foot Prostheses
نویسندگان
چکیده
In the development of a powered ankle-foot prosthesis, it is desirable to provide the prosthesis with the ability to exhibit human-like dynamics. A simple method for achieving this goal involves trajectory tracking, where a specific target torque trajectory is known, and the controller issues commands to follow the trajectory as closely as possible. However, without a methodology to update the desired trajectory in real time, this type of control scheme is limited in that it cannot adapt to externally-applied disturbances. Adaptation is critical in the field of prosthetics. A prosthesis must be able to adjust to variable terrain and respond to changes in behavior of the wearer. In this thesis, we hypothesize that a powered ankle-foot prosthesis that is controlled using a positiveforce-feedback reflex of a Hill-type posterior leg muscle will exhibit biologicallyconsistent adaptive changes in stance phase behavior across terrain. To evaluate this hypothesis, a controller for a powered ankle-foot prosthesis is advanced that comprises a neuromuscular model consisting of a single, effective plantar flexor muscle with positive force feedback and an effective dorsiflexor consisting of a proportional-derivative impedance controller. Selected parameters of this hybrid controller were optimized to best match the torque-angle relationship of an intact, biological ankle from a weight and height-matched individual with intact limbs. The torque-tracking capabilities of the electromechanical system were evaluated, and a control system was developed to enable the prosthesis to produce human-like ankle mechanics. Clinical trials were performed on a healthy, bilateral amputee study participant at two separate level-ground walking speeds, as well as for ramp ascent and descent walking at self-selected speeds. The neuromuscular reflex model, when used as the basis of the prosthetic controller during these trials, produced ankle torques in qualitative agreement with values from the weight and height-matched individual with intact limbs. This agreement included an impedance modulation in the initial stance period, as well as a biologically consistent trend of increasing prosthesis net work for correspondingly increasing floor inclinations. Thesis Supervisor: Hugh Herr Title: Associate Professor of Media Arts and Sciences Assistant Professor of Health Science and Technology
منابع مشابه
Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been s...
متن کاملLocomotion Envelopes for Adaptive Control of Powered Ankle Prostheses
In this paper we combine Gaussian process regression and impedance control, to illicit robust, anthropomorphic, adaptive control of a powered ankle prosthesis. We learn the non-linear manifolds which guide how locomotion variables temporally evolve, and regress that surface over a velocity range to create a manifold. The joint set of manifolds, as well as the temporal evolution of the gait-cycl...
متن کاملControl of a powered ankle-foot prosthesis based on a neuromuscular model.
Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their intended gait speed and terrain, these controllers do not allow for adaptation to environmental disturbances such as speed transients and terrain variation. Here we present a...
متن کاملInitial Experimental Study on Dynamic Interaction Between an Amputee and a Powered Ankle-Foot Prostheses
Today, commercially available ankle-foot prostheses are completely passive, and consequently, their mechanical properties remain fixed with walking speed and terrain. Conversely, normal human ankle stiffness varies within each gait cycle and also with walking speed [1][2][3]. Furthermore, some studies have indicated that one of the main functions of the human ankle is to provide adequate energy...
متن کاملMulti-axis Capability for Powered Ankle-Foot Prostheses
The ankle joint of lower extremity powered prostheses are generally designed to be capable of controlling a single degree of freedom (DOF) in the sagittal plane, allowing a focus on improved mobility in straight walking. However, the single DOF ankle movements are rare in normal lower limb actions such as walking on a straight path or turning when the ankle movements in both sagittal and fronta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010